# **CHOICE BASED CREDIT SYSTEM SYLLABUS (CBCS)**

# **Post Graduate Department of Zoology**



# M.Sc. Syllabus (2023-2025)

# SHAILABALA WOMEN'S AUTONOMOUS COLLEGE CUTTACK

# Curriculum Overview (M.Sc.)

|     | SEMESTER-I   |        |                 |       |         |              |            |       |
|-----|--------------|--------|-----------------|-------|---------|--------------|------------|-------|
| SL. | NATURE       | COURSE | PAPER TITLE     | UNITS | CREDITS | MA           | ARKS       |       |
| NO. | OF<br>COURSE | CODE   |                 |       |         |              |            | TOTAL |
|     | COURSE       |        |                 |       |         | MID-SEM      | END<br>SEM | TOTAL |
| 1   | Hard core    | HC-101 | Theory          | 5     | 5       | 30           | 70         | 100   |
| 2   | Hard core    | HC-102 | Theory          | 5     | 5       | 30           | 70         | 100   |
| 3   | Hard core    | HC-103 | Theory          | 5     | 5       | 30           | 70         | 100   |
| 4   | Hard core    | HC-104 | Practical       |       | 5       | 30           | 70         | 100   |
| 5   | Allied       | AC-101 | Computer        | 3     | 3       | Mid-sem      | 30         | 50    |
|     | Core         |        | Application     |       |         | 10+Practical |            |       |
|     |              |        | Course by e-    |       |         | 10=20        |            |       |
|     |              |        | learning centre |       |         | marks        |            |       |
|     | Total        |        |                 |       | 23      | 140          | 310        | 450   |

# Distribution of Course (Semester wise)

|            | SEMESTER-II      |                |                                                                                   |       |         |         |            |       |
|------------|------------------|----------------|-----------------------------------------------------------------------------------|-------|---------|---------|------------|-------|
| SL.<br>NO. | NATURE<br>OF     | COURSE<br>CODE | PAPER TITLE                                                                       | UNITS | CREDITS | M       | ARKS       |       |
|            | COURSE           |                |                                                                                   |       |         | MID-SEM | END<br>SEM | TOTAL |
| 1          | Hard core        | HC-201         | Theory                                                                            | 5     | 5       | 30      | 70         | 100   |
| 2          | Hard core        | HC-202         | Theory                                                                            | 5     | 5       | 30      | 70         | 100   |
| 3          | Hard core        | HC-203         | Theory                                                                            | 5     | 5       | 30      | 70         | 100   |
| 4          | Hard core        | HC-204         | Practical                                                                         |       | 5       | 30      | 70         | 100   |
| 5          | Core<br>Elective | CE-201         | Theory (Options<br>will be given to<br>choose any one out<br>of two)              | 5     | 5       | 30      | 70         | 100   |
| 6          | Open<br>Elective | OE-201         | Theory (Open for<br>other PG students)<br>or MOOCs (from<br>SWAYAM/NPTEL<br>etc.) |       | 4       |         | 50         | 50    |
|            | Total            |                | ,                                                                                 |       | 29      | 150     | 400        | 550   |

|            | SEMESTER-III        |                |                                                                      |       |         |         |            |       |
|------------|---------------------|----------------|----------------------------------------------------------------------|-------|---------|---------|------------|-------|
| SL.<br>NO. | NATURE<br>OF        | COURSE<br>CODE | PAPER TITLE                                                          | UNITS | CREDITS | M       | ARKS       |       |
|            | COURSE              |                |                                                                      |       |         | MID-SEM | END<br>SEM | TOTAL |
| 1          | Hard core           | HC-301         | Theory                                                               | 5     | 5       | 30      | 70         | 100   |
| 2          | Hard core           | HC-302         | Theory                                                               | 5     | 5       | 30      | 70         | 100   |
| 3          | Hard core           | HC-303         | Practical                                                            |       | 5       | 30      | 70         | 100   |
| 4          | Core<br>Elective    | CE-301         | Theory (Options<br>will be given to<br>choose any one out<br>of two) | 5     | 5       | 30      | 70         | 100   |
| 5          | Core<br>Elective    | CE-302         | Theory (Options<br>will be given to<br>choose any one out<br>of two) | 5     | 5       | 30      | 70         | 100   |
| 6          | Field<br>Internship | FI-301         | Field Internship                                                     |       | 4       |         | 50         | 50    |
|            | Total               |                |                                                                      |       | 29      | 150     | 400        | 550   |

|            | SEMESTER-IV      |                |                                                                      |       |         |         |            |       |
|------------|------------------|----------------|----------------------------------------------------------------------|-------|---------|---------|------------|-------|
| SL.<br>NO. | NATURE<br>OF     | COURSE<br>CODE | PAPER TITLE                                                          | UNITS | CREDITS | M       | ARKS       |       |
|            | COURSE           |                |                                                                      |       |         | MID-SEM | END<br>SEM | TOTAL |
| 1          | Hard core        | HC-401         | Theory                                                               | 5     | 5       | 30      | 70         | 100   |
| 2          | Hard core        | HC-402         | Practical                                                            |       | 5       | 30      | 70         | 100   |
| 3          | Hard core        | HC-403         | Dissertation                                                         |       | 5       |         | 100        | 100   |
| 4          | Core<br>Elective | CE-401         | Theory (Options<br>will be given to<br>choose any one out<br>of two) | 5     | 5       | 30      | 70         | 100   |
| 5          | Allied<br>Core   | AC-401         | Theory (Women &<br>Society)(For all PG<br>subjects/programs)         | 3     | 3       | 15      | 35         | 50    |
|            | Total            |                |                                                                      |       | 23      | 105     | 345        | 450   |

|                     | SUMMARY  |      |
|---------------------|----------|------|
| HC- Hard core       | 14 x 100 | 1400 |
| CE-Core Elective    | 04 x 100 | 400  |
| OE-Open Elective    | 01 x 50  | 50   |
| AC-Allied Core      | 02 x 50  | 100  |
| FI-Field Internship | 01 x 50  | 50   |
| Total Marks         |          | 2000 |

#### **Program Specific Outcomes (PSO) of M.Sc. Zoology**

**PSO1:** Developing **deeper understanding** of key cncepts of biology at biochemical, molecular and cellular level, physiology and reproduction at organismal level, and ecological impact on animal behavior.

**PSO2: Elucidation** of animal-animal, animal-plant, animal-microbe interactions and their consequences to animals, humans and the environment.

**PSO3: Strengthening** of genetics and cytogenetics principle in light of advancements in understanding human genome and genomes of other model organisms.

**PSO4: Description** of expression of genome revealing multiple levels of regulation and strategies to manipulate the same in the benefit of the mankind.

**PSO5: Learning** handling DNA sequence data and its analysis which equip students to get employed in R&D in the industry involved in DNA sequencing services, diagnostics, and microbiome analysis.

**PSO6: Understanding** relationships of variations in phenotypic expression of genomes and their genomewide interaction with other organisms.

PSO 7: Development of an understanding of zoological science for its application in today's modern world

**PSO 8: Development** of theoretical and practical knowledge in handling the animals and using them as model organism

PSO9: Maintenance of high standards of learning in animal sciences

# M.Sc. Zoology General Course Framework & Structure

| S.No | Paper No | Title                                                                            | Credits | Proposed Marks |
|------|----------|----------------------------------------------------------------------------------|---------|----------------|
|      |          | SEMESTER ONE                                                                     |         |                |
| 1    | HC-101   | Biology of Non-Chordates                                                         | 5       | 100            |
| 2    | HC-102   | Cytology and Genetics                                                            | 5       | 100            |
| 3    | HC-103   | Biosystematics, Conservation Biology, Evolution and Ecology                      | 5       | 100            |
| 4    | HC-104   | Practical                                                                        | 5       | 100            |
| 5    | AC-101   | Computer Application Course by e-learning centre                                 | 3       | 50             |
|      |          | TOTAL                                                                            | 23      | 450            |
|      |          | SEMESTER TWO                                                                     |         |                |
| 1    | HC-201   | Biology of Chordates                                                             | 5       | 100            |
| 2    | HC-202   | Molecular Biology                                                                | 5       | 100            |
| 3    | HC-203   | Physiology, Endocrinology and Histology                                          | 5       | 100            |
| 4    | HC-204   | Practical                                                                        | 5       | 100            |
| 5    | CE-201   | Ethology, Applied Ecology and<br>Microbiology/Biochemistry                       | 5       | 100            |
| 6    | OE-201   | Food, Nutrition and Health/ MOOCs (from<br>SWAYAM/NPTEL etc.)                    | 4       | 50             |
|      |          | TOTAL                                                                            | 29      | 550            |
|      |          | SEMESTER THREE                                                                   |         |                |
| 1    | HC-301   | Immunology and Animal Biotechnology                                              | 5       | 100            |
| 2    | HC-302   | Developmental Biology and Radiation Biology                                      | 5       | 100            |
| 3    | HC-303   | Practical                                                                        | 5       | 100            |
| 4    | CE-301   | Bioinstrumentation and Biostatistics/<br>Bioinformatics, Biosafety and Bioethics | 5       | 100            |
| 5    | CE-302   | Epigenetics and Cancer Biology / Entomology                                      | 5       | 100            |
| 6    | FI-301   | Field Internship                                                                 | 3       | 50             |
|      |          | TOTAL                                                                            | 28      | 550            |
|      |          | SEMESTER FOUR                                                                    |         |                |
| 1    | HC-401   | Conservation Biology                                                             | 5       | 100            |
| 2    | HC-402   | Practical                                                                        | 5       | 100            |
| 3    | HC-403   | Dissertation                                                                     | 5       | 100            |
| 4    | CE-401   | Cytogenetics and Stress Physiology and Metabolic disorders / Applied Biology     | 5       | 100            |
| 5    | AC-401   | Women and Society                                                                | 3       | 50             |
|      |          | TOTAL                                                                            | 23      | 450            |
|      |          |                                                                                  | 103     | 2000           |

# **SEMESTER-I**

#### Semester-One

| HC 101<br>Biology of<br>Chordates<br>Credits: 5 | <b>FNON-</b><br>Course Objectives: Objective of the paper is to provide brief idea<br>about each taxon of the non-chordates with some important<br>biological features.<br>Student Learning Outcomes: Students after completion of this                                                                                                                                                                                    |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I<br>Lower<br>Invertebrates                | <ol> <li>Locomotion, nutrition and reproduction in Protozoa</li> <li>Parasitic Protozoans with special reference to human host</li> <li>Origin of Metazoa</li> <li>Canal system in Porifera</li> </ol>                                                                                                                                                                                                                     |
| Unit II<br>Lower &<br>Higher<br>Invertebrates   | <ol> <li>Polymorphism in Coelenterates</li> <li>Ctenophora and its affinities</li> <li>Host-parasite interactions</li> <li>Coelom, metamerism and segmental organs of Annelida</li> </ol>                                                                                                                                                                                                                                  |
| Unit III<br>Higher<br>Invertebrates             | <ol> <li>Parasitic adaptations in helminths</li> <li>Life cycle of <i>Fasciola hepatica</i></li> <li>Life cycle of <i>Wuchereria bancrofti</i></li> <li>Excretory structures and functions in annelids</li> </ol>                                                                                                                                                                                                          |
| Unit IV<br>Higher<br>Invertebrates              | <ol> <li>Structural organization and phylogenetic status of <i>Limulus</i></li> <li>Parasitic castration with reference to the life cycle of <i>Sacculina</i></li> <li>Larval forms in Crustaceans</li> <li>Structural organization and phylogenetic status of Peripatus</li> </ol>                                                                                                                                        |
| Unit V<br>Higher<br>Invertebrates               | <ol> <li>Respiration in Molluscs</li> <li>Torsion and de-torsion in Gastropoda</li> <li>Water vascular system of Echinoderms</li> <li>Larval forms in Echinodermata</li> </ol>                                                                                                                                                                                                                                             |
|                                                 | <ul> <li>Recommended Textbooks and References:</li> <li>1. Invertebrate Zoology, R.D. Barnes</li> <li>2. The invertebrates, L.H. Hyman, Vol I to VI</li> <li>3. Invertebrate structure, Barrington, Nelson</li> <li>4. Invertebrate Zoology, R.L. Kotpal</li> <li>5. The Invertebrates: Function and Form, W. Sherman, V.G. Sherman</li> <li>6. A Text Book of Zoology, T.J. Parker, W.A. Haswell, Vol-I and II</li> </ul> |

\_\_\_\_\_

#### Semester-One

| HC 102<br>Cytology and<br>Genetics                        | Course Objectives: Objectives of the paper is to provide basic<br>idea about cell biology and inheritance pattern.<br>Student Learning Outcomes: Students after completion of thisca<br>are expected to know different cellular organelles and their funct<br>cell cycle regulations, basic inheritance pattern and basic gene map                                                                                                                                                                                                                                                                                                              | tions, |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credits: 5<br>Unit I<br>Cytology-I                        | 1. Molecular organization of Cell membrane         2. Membrane transporter: Structure and function         3. Mechanism of membrane transports         4. Cell-cell interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Unit II<br>Cytology-II                                    | <ol> <li>Structure and function of Cytoskeleton and its role in motility</li> <li>Structure, Biogenesis and function of Lysosome and Peroxisomes</li> <li>Endoplasmic Reticulum and compartmentalization of Golgi</li> <li>Structure and function of Mitochondria, protein targeting</li> </ol>                                                                                                                                                                                                                                                                                                                                                 |        |
| Unit III<br>Cytology-III                                  | <ol> <li>Nucleus and nuclear transport</li> <li>Concept and organization of Gene and Chromosome</li> <li>Cell cycle and its regulations</li> <li>Cell Division and it's regulation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| Unit IV<br>Mendelism &<br>Neo-<br>Mendelism               | <ol> <li>Mendelian Genetics</li> <li>Neo-Mendelism, Pleiotropy, genomic imprinting, penetrance and expressivity</li> <li>Linkage and crossing over</li> <li>Extra-chromosomal Inheritance, Pedigree analysis, Complementation tests</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| <b>Unit V</b><br>Extensions of<br>Mendelian<br>principles | <ol> <li>Multiple Alleles</li> <li>Codominance, incomplete dominance</li> <li>Epistasis</li> <li>Sex linkage, sex limited and sex influenced characters</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                           | <ol> <li>Recommended Textbooks and References:</li> <li>Molecular Cell Biology, Lodish, Berk, Kaiser, Krieger, Bretscher, Ploegh,<br/>Amon, Martin</li> <li>Molecular Biology of the Cell, Alberts <i>et al.</i>, (2008), Garland Science, New<br/>York, USA</li> <li>The cell: A molecular approach, Geoffrey, M. Cooper, R.E. Hausman(2004)<br/>ASM Press</li> <li>Cell and Molecular biology, Gerald Karp (2015) John wiley and sons</li> <li>Principles of Genetics, Snustad and Simmons, (4th Ed. 2005), JohnWiley<br/>&amp; Sons, USA</li> <li>Genetics, J. Russell, Benjamin-Cummings Publishing Company, California,<br/>USA</li> </ol> |        |

#### Semester-One

| HC 103<br>Biosystemat<br>Conservation<br>Biology,<br>Evolution, an<br>Ecology<br>Credits: 5 | <ul> <li>Biodiversity and conservation of bio-resources, makes student aware about the evolutionary process and various components of ecosystem and their importance.</li> <li>Student Learning Outcomes: Students after completion of this</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Unit I<br>Biosystematics                                                                    | <ol> <li>History of taxonomy and development of systematic, importance and application<br/>of systematic in biology, International code of zoological nomenclature (ICZN),<br/>concept of keys, type specimens</li> <li>Moropho-taxonomy, cyto-taxonomy, molecular-taxonomy, DNA barcoding</li> <li>Species concept, IUCN red list of threatened species, Invasive species, Alien<br/>species, Indicator species, Keystone species, Umbrella species, Flagship species,<br/>Charismatic species</li> <li>Modes of collection and preservation of animals, Outline classification of animals</li> </ol> |  |  |
| Unit II<br>Bioconservation                                                                  | <ol> <li>Biodiversity (genetic diversity, species diversity, ecosystem diversity) and its use, biodiversity hotspot in India.</li> <li>Measuring Biodiversity: alpha, beta and gamma diversity, Species Richness(S), Evenness(E), Simpson index(D), Shannon-Weiner Index (H')</li> <li>National Act and International Act related to Biodiversity Conservation</li> <li>In-situ conservation (Indian context) (Sanctuaries, National and Biosphere reserves) and Ex-situ conservation (Indian context) (Botanical gardens, zoos, cryopreservation, gene bank).</li> </ol>                              |  |  |
| Unit III<br>Evolution                                                                       | <ol> <li>Theories of organic evolution (Lamarkism and Darwinism) and the Modern<br/>synthetic theory.</li> <li>Phylogenetic tree, molecular phylogeny inference using DNA and protein<br/>sequences</li> <li>Hardy-Weinberg Law</li> <li>Isolating mechanisms, and Speciation</li> </ol>                                                                                                                                                                                                                                                                                                               |  |  |
| Unit IV<br>Ecology                                                                          | <ol> <li>Ecosystem structure and characteristics</li> <li>Species Interactions</li> <li>Population characteristics</li> <li>Gause's Principle</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Unit V<br>Ecology                                                                           | <ol> <li>Community Ecology: Nature of communities</li> <li>Community structure and attributes</li> <li>Ecotone and Edge effect</li> <li>Ecological Succession</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                             | <ol> <li>Recommended Textbooks and References:         <ol> <li>Principle of Animal Taxonomy; G.G. Simpson. Oxford IBH Publishing Company.</li> <li>Elements of Taxonomy. E. Mayer.</li> <li>Theory and Practice of Animal Taxonomy. V.C. Kapoor, Oxford &amp; IBH Publishing Co.</li> <li>Evolution : Strickberger</li> <li>Evolutionary analysis : Herron and freeman</li> <li>Campbell Biology: Reece, Urry, Cain <i>et al.</i></li> <li>Essential of Ecology: Miller and Spoolman</li> </ol> </li> </ol>                                                                                           |  |  |

| Semester-On<br>HC-104<br>Practical<br>Credits: 5                                                                                                      | <b>Course Objectives:</b> Objectives of the paper is to provide 1) hands<br>on exposure in collection, preservation and identification of<br>invertebrates using basic taxonomic key, 2) observation and<br>preparation of different slides related to cell biology 3) solving<br>different problem related to inheritance biology,4) construction of<br>phylogenetic tree, and 5) Hand on experience on ecological<br>adaptation and performing different biochemical experiments.<br><b>Student Learning Outcomes</b> : Students will be able to know about<br>collection, preservation, identification and drawing phylogenetic<br>tree of organisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biology of Non-<br>Chordate, Cellular<br>Biology &<br>Inheritance<br>Biology,<br>Biosystematics,<br>conservation<br>Biology, Evolution<br>and Ecology | <ol> <li>Invertebrate Anatomy of preserved animals available in the market         <ul> <li>a) Prawn (Nervous system &amp; Statocyst)</li> <li>b) Cockroach (Nervous, reproductive &amp; salivary systems)</li> <li>c) Squilla (Nervous system)</li> <li>d) Sepia (Nervous system)</li> <li>e) Loligo (Nervous system)</li> <li>f) Unio (Nervous system)</li> <li>e) Loligo (Nervous system)</li> <li>f) Unio (Nervous system)</li> </ul> </li> <li>e) Loligo (Nervous system)</li> <li>f) Unio (Nervous system)</li> <li>g) Unio (Nervous system)</li> <li>g) Unio (Nervous system)</li> <li>e) Loligo (Nervous system)</li> <li>g) Unio (Nervous system)</li></ol> |

**SEMESTER-II** 

| Semester-Two                                                  | <b>Course Objectives:</b> Objective of the paper is to provide brief idea                                                                                                                                                                                                           |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HC-201<br><b>Biology of</b><br><b>Chordates</b><br>Credits: 5 | about each taxon of chordates with some important biological features.<br><b>Student Learning Outcomes:</b> Students after completion of this course are expected to know the chordate diversity and some of the important features with respect to their evolutionaryrelationship. |

| Unit I<br>Protochordates      | <ol> <li>Biology and evolutionary significance of Hemichordates,<br/>Cephalochordates and Urochordates</li> <li>General organization, classification and affinities of Cyclostomata</li> <li>Structural organization of Petromyzon and its comparison with<br/>Myxine</li> <li>Origin of chordates</li> </ol> |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit II<br>Superclass: Pisces | <ol> <li>Biology and affinities of Dipnoi and Latimeria</li> <li>Swim bladder and lateral line system in fishes</li> <li>Parental care in amphibian</li> <li>Neoteny and metamorphosis in amphibian</li> </ol>                                                                                                |
| Unit III<br>Class: Reptilia   | <ol> <li>Structural organization and phylogenetic significance of Sphenodon</li> <li>Adaptive radiation in reptiles</li> <li>Skull in reptiles</li> </ol>                                                                                                                                                     |
| Unit IV<br>Class: Aves        | <ol> <li>Origin and evolution in birds</li> <li>Flight adaptation in birds</li> <li>Migration in birds</li> </ol>                                                                                                                                                                                             |
| Unit V<br>Class: Mammalia     | <ol> <li>Origin of mammal</li> <li>Aquatic mammals</li> <li>Prototheria and metatheria</li> <li>Dentition in Mammals</li> </ol>                                                                                                                                                                               |
|                               | <ul> <li>Recommended Textbooks and References:</li> <li>1. Phylum Chordata, H. Newman</li> <li>2. The Life of Vertebrates, J.Z. Youn</li> <li>3. A Text Book of Zoology, T.J. Parker and W.A. Haswell, Vol. I and II</li> </ul>                                                                               |

#### Semester-Two

| HC-202<br>Molecular Biolo<br>Credits: 5 | <b>Course Objectives:</b> The objectives of this paper is to provide comprehensive idea about the structure and function of nucleic acid and regulations of gene expression.<br><b>Student Learning Outcomes:</b> Students after attending the course will understand role of bio-molecule involved in control and expression of genetic information and gene regulation at the level of transcription and translation in a better way. |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I                                  | 1. Structure of Nucleic acids                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nucleic<br>Acids                        | <ul><li>2. DNA replication</li><li>3. DNA damage and repair mechanism</li></ul>                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 4. Recombination: Homologous and site-specific recombination                                                                                                                                                                                                                                                                                                                                                                            |
| Unit II                                 | 1. Mechanism of Transcription                                                                                                                                                                                                                                                                                                                                                                                                           |
| Molecular<br>Synthesis                  | <ul><li>2. RNA Processing, RNA editing, splicing, and polyadenylation</li><li>3. RNA Interference</li></ul>                                                                                                                                                                                                                                                                                                                             |
|                                         | <ul><li>4. Structure and function of different types of RNA, RNA transport</li></ul>                                                                                                                                                                                                                                                                                                                                                    |
| Unit III<br>Molecular                   | 1. Genetic code                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Synthesis                               | 2. Protein translation                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | <ul><li>3. Post- translational modification of proteins</li><li>4. Translational inhibitor</li></ul>                                                                                                                                                                                                                                                                                                                                    |
| Unit IV                                 | 1. Prokaryotic gene regulation                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gene Regulation                         | 2. Eukaryotic gene regulations                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | <ul><li>3. Topoisomerase, its role during replication and transcription</li><li>4. Gene regulation and expression in viruses</li></ul>                                                                                                                                                                                                                                                                                                  |
| Unit V                                  | 1. Hormones and their receptors, cell surface receptor,                                                                                                                                                                                                                                                                                                                                                                                 |
| Gene Regulation                         | <b>2.</b> General principles of cell communication, Signaling through G-protein coupled receptors,                                                                                                                                                                                                                                                                                                                                      |
|                                         | 3. Second messengers signaling pathway                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | 4. Quorum sensing                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Recommended Textbooks and References:                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 1. Molecular Cell Biology, Lodish, Berk, Kaiser, Krieger,                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | Bretscher, Ploegh, Amon, Martin<br>2. Cell Biology, G. Karp                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 3. Cell and Molecular Biology, De Robertis                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | <b>4.</b> Molecular Biology of the Cell, Alberts <i>et al.</i> , Garland Science, NewYork, USA                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Semester- T<br>HC-203<br>Physiology,<br>Endocrinolog<br>and Histolog<br>Credits: 5       | <ul> <li>Student Learning Outcomes: Students after completion of this course are expected to learn basic histological processes and</li> <li>idea about various physiological processes, endocrine system and basic aspect of Histology.</li> <li>Student Learning Outcomes: Students after completion of this course are expected to learn basic histological features of important organ, the role of physiological processes and</li> </ul>                                         |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I<br>Digestion,<br>Excretion                                                        | <ol> <li>Digestive System: Secretory function of alimentary canal,</li> <li>Digestion and absorption</li> <li>Excretory System: Nephron</li> <li>Mechanism of Urine formation</li> </ol>                                                                                                                                                                                                                                                                                               |
| Unit II<br>Nerve Conduction<br>and Sense Organs,<br>Respiration, and<br>Thermoregulation | <ol> <li>Respiratory System: Mechanism of breathing, exchange of gases and<br/>its regulation</li> <li>Nervous System: Neurons, synapse and synaptic transmission and<br/>mechanism of nerve conduction.</li> <li>Sense Organs: Vision, hearing and taste</li> <li>Types of muscle and mechanism of muscle contraction.</li> </ol>                                                                                                                                                     |
| Unit III<br>Circulation                                                                  | <ol> <li>Cardiovascular System: Double circulation, cardiac cycle</li> <li>Physiology and Biochemistry of Blood coagulation</li> <li>Blood pressure, Blood group and Hemoglobin</li> <li>ECG – its principle and significance</li> </ol>                                                                                                                                                                                                                                               |
| Unit IV<br>Endocrinology                                                                 | <ol> <li>Structure, chemistry and function of Pituitary gland</li> <li>Structure, chemistry and function of Thyroid and para-thyroid gland</li> <li>Structure, chemistry and function of Pancreas and Adrenal gland</li> <li>Mechanism of hormone action</li> </ol>                                                                                                                                                                                                                    |
| Unit V<br>Histology                                                                      | <ol> <li>Structure and function of epithelial tissue and connective tissue</li> <li>Cell adhesion and cell adhesion molecules</li> <li>Histological details and functions of liver</li> <li>Histological details and functions of Spleen &amp; Kidney</li> </ol>                                                                                                                                                                                                                       |
|                                                                                          | <ul> <li>Recommended Textbooks and References:</li> <li>1. Endocrinology, Hadley</li> <li>2. Endocrinology, Turner and Bagnora</li> <li>3. Comparative Vertebrate Endocrinology, P.J. Bentley</li> <li>4. Text Book of Comparative Endocrinology, H.A. Bern</li> <li>5. Animal Physiology: Adaptation and Environmental, K.S. Nelson (ed)<br/>Cambridge University Press, Cambridge, UK</li> <li>6. Medical physiology, Guyton and Hall</li> <li>7. Histology, H.R. Michael</li> </ul> |

| Semester- Tv                                                                                                                                                              | VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HC-204<br><b>Practical</b><br>Credits: 5                                                                                                                                  | Course Objectives: Objectives of the paper is to provide 1) hand<br>on exposure in collection, preservation and identification of<br>vertebrates using basic taxonomic key, 2) observation and<br>preparation of different slides related to histology 3) experiment<br>related to human physiology, 4) practical related to animal<br>behaviour, 5) performing different ecological experiments and<br>basic microbological experiments.<br>Student Learning Outcomes: On completion of this course,<br>students are expected to learn collection, preservation,<br>identification of vertebrates, blood physiology, histological<br>details of impotant organs, experience animal behavior,<br>physicochemical analysis of water and soil, media preparation for<br>microbial growth and basic staining methods.                                                                                                                                                                                                                                                                                                                                                                                         |
| Biology of<br>Chordates,<br>Molecular<br>Biology,<br>Physiology,<br>Endocrinology and<br>Histology,<br>Ethology, Applied<br>Ecology,<br>Biogeography and<br>Palaeontology | <ol> <li>Vertebrate Anatomy of preserved animals locally available:-         <ul> <li>a) Scoliodon (Afferent and Efferent blood vessels, cranial nerves, internal ear</li> <li>b) Ampulla of Lorenzini, placoid scale</li> <li>c) Cycloid and ctenoid scales of bony fishes.</li> <li>d) Calotes (Blood vascular system, and hyoid apparatus)</li> <li>e) Pigeon (Blood vascular system, brain, air sacs, pectin, flight and perching muscles)</li> <li>f) Rat (Neck nerves, brain and vascular system)</li> </ul> </li> <li>Identification and Comments upon         <ul> <li>a) Museum specimens</li> <li>b) Bones</li> <li>c) Permanent histological slides</li> <li>Ecological experiments to determine-                 <ul> <li>a) Acidity, alkalinity and chlorinity of water samples</li> <li>b) Dissolved oxygen content of water</li> <li>c) pH of soil and water samples</li> <li>4. Identification with comments upon animals with ecological adaptation and of evolutionary importance</li> <li>5. Collecting different local animals/ photographs (least concerncategory) and their classification using taxonomic keys</li> <li>6. Physiological experiments-</li></ul></li></ul></li></ol> |

#### **Semester-Two**

# **CE-201 Ethology, Applied Ecology, and Microbiology**

Credits: 5

**Course Objectives:** Objectives of the paper is to provide basic idea about different aspects of animal behaviour, applied ecology and microbial world. **Student Learning Outcomes:** Students after completion of this course are expected to learn social organisation and their impotence in animals, pollution and its causative agents, bacterial and viral diversity, their genetics and their implication.

| Unit I              | <b>1.</b> Concept of animal behavior: Innate, Acquired; Social interaction in                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Ethology            | Insects and Primates                                                                                                               |
| 8,                  | 2. Altruism and Kin selection                                                                                                      |
|                     | 3. Neural basis of learning and memory                                                                                             |
|                     | 4. Hypothalamus and regulation of animal behaviour                                                                                 |
| Unit II             | <b>1.</b> Pollution and abatement of land,                                                                                         |
| Applied Ecology     | 2. Air and water Pollution                                                                                                         |
|                     | 3. Noise pollution                                                                                                                 |
|                     | 4. Global warming and its consequences                                                                                             |
| Unit III<br>Applied | 1. Ozone layer depletion                                                                                                           |
| Ecology             | 2. Acid rain-causes & consequences                                                                                                 |
|                     | 3. Bioremediation                                                                                                                  |
|                     | 4. Environmental Acts                                                                                                              |
| Unit IV             | 1. Bacteria structure and morphology & Classification                                                                              |
| Microbiology-I      | 2. Structure and function of bacterial cell wall                                                                                   |
|                     | 3. Genetic recombination in bacteria                                                                                               |
|                     | <b>4.</b> Antibiotics classification and mode of action                                                                            |
| Unit V              | 1. Characteristics and classification of viruses                                                                                   |
| Microbiology-II     | 2. Life cycle of Bacteriophages                                                                                                    |
|                     | <b>3.</b> Pathophysiology of CoV, $H_1N_1$ and HIV                                                                                 |
|                     | 4. Bioterrorism                                                                                                                    |
|                     | Recommended Textbooks and References:                                                                                              |
|                     | 1. Ecology, E.P. Odum, R. Holt, Winston Inc., USA,                                                                                 |
|                     | <b>2.</b> C.S. Binoda, M.P. Nayar, River Pollution In India. APH Publ. Corpn.,                                                     |
|                     | New Delhi.                                                                                                                         |
|                     | 3. Campbell Biology, Reece, Urry, Cain <i>et al</i>                                                                                |
|                     | 4. Essential of Ecology, Miller, Spoolman                                                                                          |
|                     | 5. Animal Behaviour, J. Alcock                                                                                                     |
| -                   | 6. Principles of Animal Communications, J.W. Bradbury<br>7. Miershiele en Brinsinke and Explorations, J.C. Black, J. J. Black, Oth |
|                     | 7. Microbiology Principles and Explorations, J.G. Black, L.J. Black, 9 <sup>th</sup>                                               |
|                     | Edition, Willey Publishers<br>8. Prescott's Microbiology, J. Willey, K. Sandman, D. Wood, 11 <sup>th</sup>                         |
|                     | Edition                                                                                                                            |

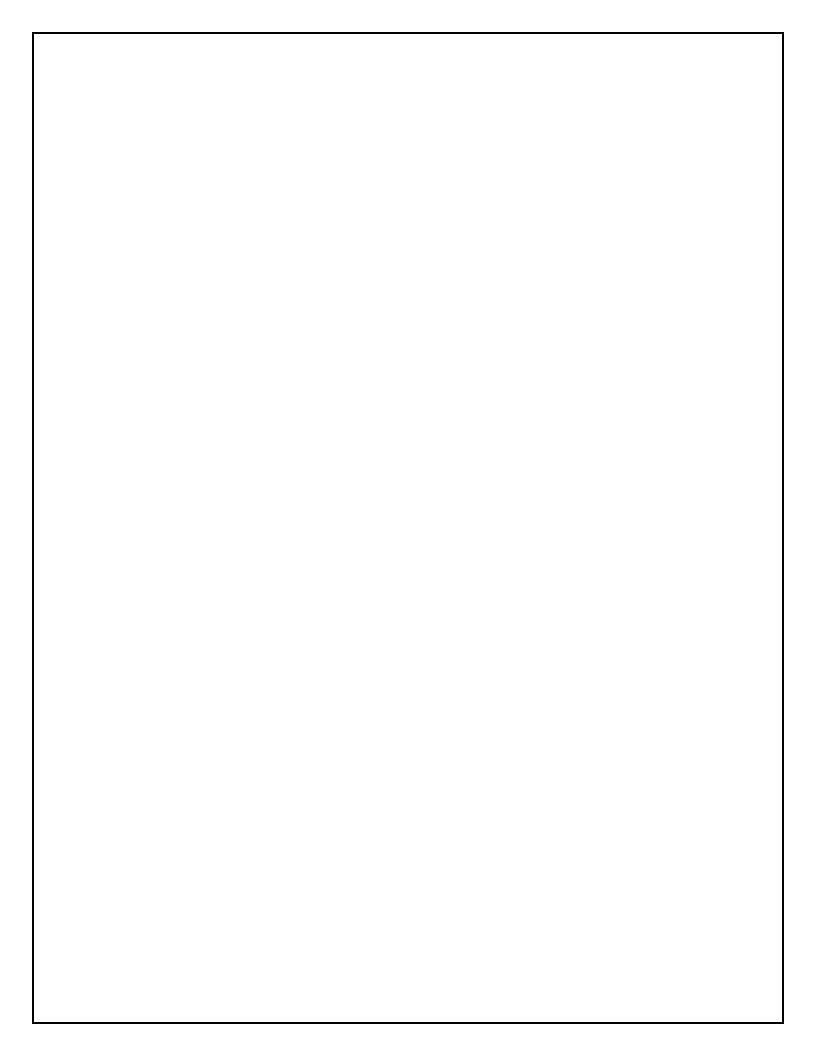
| CE-201<br><b>Biochemis</b><br>Credits: 5 | <b>Course Objectives:</b> Objectives of the paper is to provide basic idea about structure, and function of bio-molecules. The papers also focus on metabolism of Bio-molecules, basic idea about enzyme, its kinetics and regulation.<br><b>Student Learning Outcomes:</b> Students after completion of this course are expected to know different bio-molecules, their biological functions and role of enzymes in cellular metabolism                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I<br>Biochemistry                   | <ol> <li>Composition, structure, types and function of carbohydrates</li> <li>Composition, structure, types and function of lipids and steroids</li> <li>Composition, structure, types and function of amino acids and proteins</li> <li>Conformation of proteins (Ramachandran plot, secondary structure)</li> </ol>                                                                                                                                                                         |
| Unit II<br>Biochemistry                  | <ol> <li>Glycolysis and TCA cycle</li> <li>Oxidative phosphorylation, ETC and ATP synthesis</li> <li>Glycogenesis</li> <li>Glycogenolysis</li> </ol>                                                                                                                                                                                                                                                                                                                                          |
| Unit III<br>Biochemistry                 | <ol> <li>Beta – Oxidation and omega oxidation of saturated Fatty acids with odd<br/>and even number of carbon atoms</li> <li>Biosynthesis of palmitic acids</li> <li>Ketogenesis</li> </ol>                                                                                                                                                                                                                                                                                                   |
| Unit IV<br>Biochemistry                  | <ol> <li>Alternative metabolism of carbohydrates (Gluconeogenesis and HMP<br/>Shunt)</li> <li>Metabolism of amino acids and Urea cycle</li> <li>Biosynthesis of Cholesterol</li> <li>Vitamins</li> </ol>                                                                                                                                                                                                                                                                                      |
| Unit V<br>Enzymology                     | <ol> <li>Enzyme structure and classification</li> <li>Principles of catalysis, enzyme kinetics, Michaelis-Menten Equation,<br/>Line-Weaver-Burke Equation</li> <li>Mechanism of enzyme action with special references to lysozyme</li> <li>Regulation of Enzyme action</li> </ol>                                                                                                                                                                                                             |
|                                          | <ul> <li>Recommended Textbooks and References:</li> <li>1. Lehinger Principles of Biochemistry, D.L. Nelson, M.M. Cox, 07<sup>th</sup> Edition</li> <li>2. Biochemistry, J.M. Berg, L. Stryer, J.L. Tymoczko, G.J. Gatto, 08<sup>th</sup> Edition</li> <li>3. Harper's Illustrated Biochemistry, V.L. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennely, P.A. Weil, 31<sup>st</sup> Edition</li> <li>4. Principles of Biochemistry, Voet and Voet</li> <li>5. Biochemistry, Campbell</li> </ul> |

| OE-201<br>Food, Nutritio<br>and Health<br>Credits    | <b>n</b> Course Objectives: Objective of the paper is to provide brief idea about the human nutrition and nutrients.<br>Student Learning Outcomes: Students, after completion of this course, are expected to know about different essential nutrients, their role in human health and abnormalities associated with their deficiencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I<br>Basic concepts of<br>Food and<br>Nutririon | <ol> <li>Concept of balanced diet</li> <li>Nutrient Needs and Dietary pattern for Adults, Pregnant and Nursing mothers, infants, school children, adolescents and elderly</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit II<br>Health                                    | <ol> <li>Concept of health</li> <li>Major Nutritional Deficiency diseases</li> <li>Life style related diseases</li> <li>Social Health problemns</li> <li>Common ailments</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit III<br>Food Hygiene                             | <ol> <li>Potable Water</li> <li>Infections</li> <li>Brief account of food spoilage</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                      | <ol> <li>Recommended Textbooks and References:         <ol> <li>G. Biswal, C. Lenka, Food Nutrition and Health, Kalyani<br/>Publishers</li> <li>SA Lanham-New, TR Hill, AM Gallagher, HH Vorster,<br/>Introduction to human nutrition, 3<sup>rd</sup> Ed, Willey Blackwell</li> <li>MJ Gibney, HH Vorster, FJ Kok, Introduction to human<br/>nutrition, Willey Blacwell Publishing</li> <li>SR Mudambi, MV Rajagopal, Fundamental Food Nutrition and<br/>Diet Therapy, New Age International Publishers</li> <li>AA Agrawal, SA Udipi, Textbook of human nutrition, Jeypee<br/>Publishers.</li> <li>T Rekhi, H Yadav, Fundamentals of food and nutrition, Elite<br/>publishing House.</li> <li>C. Gopalan, BVR Sastri, SC Balasubhramanian, Nutritive values<br/>of Indian Food, ICMR, NIN</li> </ol> </li> </ol> |

# **SEMESTER-III**

| Semester- Three                                                  | <b>Course Objectives:</b> Objective of the paper is to provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HC-301<br>Immunology<br>and Animal<br>Biotechnology<br>Credits:5 | comprehensive idea about human immunology with special<br>emphasis on the types of immunity and immune cells, maturation<br>and activation of B and T-cells, antibody diversity and interaction<br>with antigens. The paper also deals with Histochemical<br>techniques<br><b>Student Learning Outcomes:</b> Students after completion of this<br>course are expected to know in details about human immune<br>system and mechanism of immunity. The histochemical<br>technique shall help the students in development of their research<br>skills. |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| TT *4 T                 | 1 Turnete Q Allert's a Turner star                                                     |
|-------------------------|----------------------------------------------------------------------------------------|
| Unit I                  | 1. Innate & Adaptive Immunity                                                          |
| <b>Basic Immunology</b> | 2. Active & Passive Immunity                                                           |
|                         | <b>3.</b> Generation of antibody diversity                                             |
|                         | 4. Antigen-Antibody Interactions                                                       |
| Unit II                 | <b>1.</b> MHC                                                                          |
| Components of Immune    | 2. Cytokines                                                                           |
| System                  | 3. Complement System                                                                   |
|                         | 4. Hypersensitivity                                                                    |
| Unit III                | 1. Cloning Vectors                                                                     |
| Biotechnology-I         | 2. Restriction Enzymes                                                                 |
|                         | <b>3.</b> PCR                                                                          |
|                         | 4. DNA Finger printing                                                                 |
| Unit IV                 | 1. DNA sequencing                                                                      |
| Biotechnology-II        | 2. Blotting Techniques                                                                 |
| (Molecular              | 3. DNA microarray                                                                      |
| Techniques)             | 4. Animal cell culture                                                                 |
| Unit V                  | 1. Transgenic Animals                                                                  |
| Biotechnology-III       | 2. Application of Transgenic animals                                                   |
|                         | 3. Recombinant DNA in medicine                                                         |
|                         | 4. Vaccine Technology and Monoclonal Antibodies                                        |
|                         | 5. Gene therapy                                                                        |
|                         | 6. Top 10 Biotechnology Inventions                                                     |
|                         | Recommended Textbooks and References:                                                  |
|                         | 1. Kuby Immunology, J. Punt, S. Stanford, P. Jones, J.A. Owen, 8 <sup>th</sup> Edition |
|                         | <b>2.</b> Understanding Immunology, P. Wood, 02 <sup>nd</sup> Edition                  |
|                         | <b>3.</b> Basic Immunology, A.K. Abbas, A.H. Lichtman, 3 <sup>rd</sup> Edition         |
|                         | <b>4.</b> Clinical Immunology Principles and Practices, R.R. Rich, 04 <sup>th</sup>    |
| -                       | Edition, Elsevier Publisher                                                            |
|                         | 5. Essential Clinical Immunology, J.B. Jabrskie, Cambridge                             |
|                         | <b>6.</b> Biotechnology: Expanding Horizons, Kalyani Publishers                        |
|                         | <b>7.</b> Biotechnology, U. Satyanarayan and U. Chakrapani, Books and                  |
|                         | Allied Ltd.                                                                            |
|                         | <b>8.</b> Gene Cloning and DNA Analysis, Brown, T.A., Academic Press                   |
| L                       | or come crowing and providentially site, providential rest                             |


HC-302 Developmental Biology and Radiation Biology

Credits: 5

**Course Objectives:** The main objective of Developmental Biology course is to make students understand the patterns and process of embryonic development, body plan, fate map, induction, competence, regulative and mosaic development, molecular and genetic approach for the study of developing embryo which is not necessarily shared with any otherdisciplines in the biological sciences. This paper also deals with Radiation Biology with special emphasis on different radiation sourses, its health impact, use of radiation in controlling pestand its role in inherited diseases. **Student Learning Outcomes**: Students are expected to lean the

Student Learning Outcomes: Students are expected to lean the basic principle and process of developmental biology and Radiation Biology and able to make themselves aware to deleterious effects radiation too

| Unit I<br>Developmental<br>Biology-I   | <ol> <li>Structure of Gonads (Testis and Ovary)</li> <li>Synthesis and action of male hormones</li> <li>Synthesis and action of female hormones</li> <li>Female reproductive/gonadial cycle</li> </ol>                                                                                                                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit II<br>Developmental<br>Biology-II | <ol> <li>Structure of gametes (Male and Female)</li> <li>Gametogenesis</li> <li>Molecular mechanism of fertilization</li> <li>Cleavage and its pattern</li> </ol>                                                                                                                                                                                                                                               |
| Unit III<br>Developmental Biology-III  | <ol> <li>Basic experiments of developmental biology</li> <li>Axes and pattern formation in Drosophila</li> <li>Vulva formation in <i>Caenorhabditis elegans</i></li> <li>Limb development and regeneration in vertebrates</li> </ol>                                                                                                                                                                            |
| Unit IV<br>Radiation Biology4          | <ol> <li>Definition, scope and significance of radiation biology</li> <li>Classification of radiation</li> <li>Ionizing radiation, types of electromagnetic radiation</li> <li>Radiation dose and units</li> </ol>                                                                                                                                                                                              |
| Unit V<br>Radiation Biology -II        | <ol> <li>Electromagnetic radiation and its interaction with living matter with special reference to UV and Visible light</li> <li>Radiation in insect pest management: Types of radiation used, radiation induced dominant lethal mutation</li> <li>Sterile insect technique,F<sub>1</sub> sterility technique</li> <li>Radiation induced heritable diseases</li> </ol>                                         |
|                                        | <ol> <li>Recommended Textbooks and References:         <ol> <li>Developmental Biology, S.F. Gilbert</li> <li>Introduction to Embryology, B.L. Balinsky</li> <li>The Logic of Scientific discovery, K. Popper</li> <li>Understanding Radiation Biology from DNA Damage to Cancer and Radiation<br/>Risk, K.H. Chadwick</li> </ol> </li> <li>Essentials of Radiation Biology and Protection, S. Fosher</li> </ol> |



| Semester-Thr<br>HC-303<br>Practical<br>Credits:5                                    | <b>Course Objectives:</b> Objectives of the paper is to provide a hand<br>on exposure of different instruments used in biological sciences,<br>basic practical on methods in biology, application of statistics in<br>presentation of biological data and solving biological problems,<br>basic embryological and immunologicalexperiments.<br><b>Student Learning Outcomes:</b> Students are expected to learn<br>instrumentation and their operation, stastical analysis of data,<br>identification of various stages of chick embryo and blood<br>grouping |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunology,<br>Biotechnology,<br>Developmental<br>Biology &<br>Radiation<br>Biology | <ol> <li>Demonstrations of Electrophoresis</li> <li>Demonstrations of PCR</li> <li>Demonstration of Chromatography</li> <li>Demonstration of Centrifugation</li> <li>Demonstration of Spectrophotometer and Quantification of proteinusing Biuret method, lowry method</li> <li>Quantitive measurement of Biomolecules using Spectroscopy</li> <li>Demonstration of Blood group and Rh Antigen</li> <li>Permanent Slide of thymus and spleen</li> </ol>                                                                                                       |

# CE-301 CE-301 Ceredits: 5 Course Objectives: Objectives of the paper is to provide basic idea about working principles and application of different instruments and methods used in biological sciences. The coursealso designed to give statistical analysis of biological data. Student Learning Outcomes: Students after completion of thiscourse are expected to handle and operate basic instruments for experimental purposes. The students also have clear understanding of data and its analysis that will help them in pursuing higher studies.

| Unit I<br>Microscopy,<br>Centrifugation,<br>Chromatography | <ol> <li>Light and Electron microscopy</li> <li>Centrifugation</li> <li>Affinity chromatography (Paper and TLC)</li> <li>Adsorption chromatography (Ion exchange and Gel)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectroscopy and<br>Radioisotope<br>techniques             | <ol> <li>UV/Vis Spectrophotometry</li> <li>Autoradiography</li> <li>Immunodiffusion</li> <li>Application of Radioisotopes in Biology</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unit III<br>Biostastics-I                                  | <ol> <li>Introduction and scope of Biostatistics, Levels of Measurements: Variables<br/>Nominal scale, ordinal scale, interval and ratio scale of measurements</li> <li>Tabular and graphical representation of data</li> <li>Descriptive statistics: Point estimates (Mean, Mode, Median, Percentile)</li> <li>Interval Estimates (Range, IQR, MAD, Variance, Standard Deviation, SEM,<br/>CV and CD); Error bars- various methods to calculate error bar: Standard<br/>Deviation (SD)</li> </ol>                                                                                                                                                                                       |
| Unit IV<br>Biostastics-II                                  | <ol> <li>Standard Error of the Mean (SEM), 95% Confidence Intervals (CI), Median,<br/>Range and Quartiles.</li> <li>Moments, Skewness and Kurtosis</li> <li>Confidence Intervals</li> <li>Statistical Hypothesis Testing, significance level, p value, Relationship<br/>between Confidence Intervals and Statistical Significance, difference between<br/>parametric and non parametric test</li> </ol>                                                                                                                                                                                                                                                                                  |
| Unit V<br>Biostastics-<br>III                              | <ol> <li>Student"s t test, F test</li> <li>ANOVA test (one way and two way), Chi- square test</li> <li>Probability distributions- Normal, Binomial and Poisson</li> <li>Simple correlation and Regression</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                            | <ul> <li>Recommended Textbooks and References:</li> <li>Modern Spectroscopy, JM Hollas, Willey Publication</li> <li>Molecular Structure and Spectroscopy, G. Aruldash</li> <li>Experimental Biochemistry, Wilson and Walker</li> <li>Fundamental of light microscopy and electronic Imaging, Douglas Murphy</li> <li>Introductory biostatistics, C.T. Le, L.E. Eberly, John Wiley &amp; Sons</li> <li>Biostatistics: A methodology for the health sciences, G. van Belle, L.D. Fisher, P.J. Heagerty, T. Lumley, Vol. 519, John Wiley &amp; Sons</li> <li>Intuitive biostatistics: A nonmathematical guide to statistical thinking, H. Motulsky, Oxford University Press, USA</li> </ul> |

# **CE-301 Bioinformatics, Biosafety and Bioethics**

Credits: 5

**Course Objectives:** The objectives of this course is to provide theory and practical experience to analyze different biological data using common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts in Bioinformatics. The objectives of this course are to educate students about the fundamental concepts of bioprocess technology and its related applications, thus preparing them to meet the challenges of the new and emerging areas of biotechnology industry. To become familiar with India''s IPR Policy; To learn biosafety and risk assessment of products derived from biotechnology and regulation of such products.

**Student Learning Outcomes:** Student should be able to develop an understanding of basic theory of these computational tools; to gain working knowledge of these computational tools and methods; appreciate their relevance for investigating specific contemporary biological questions and to critically analyse and interpret results of their study. Students should be able to appreciate relevance of microorganisms from industrial context; to carry out stoichiometric calculations and specify models of their growth; to give anaccount of design and operations of various fermenters; to calculate yield and production rates in a biological production process, and also interpret data etc.

| Unit I<br>Bioinformatics-I<br>Unit II<br>Bioinformatics-II | <ol> <li>Introduction to Bioinformatics</li> <li>DNA and protein databsae</li> <li>Searching for sequence database like FASTA</li> <li>BLAST algorithm</li> <li>Structural viewers of protein (PyMOL)</li> <li>Multiple sequence alignment using CLUSTALW</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III<br>Bioinformatics<br>- III                        | <ol> <li>Multiple sequence alignment using CLUSTALX</li> <li>Basic ideal about MEGA</li> <li>Construction of phylogenetic tree</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unit IV<br>Biosafety                                       | <ol> <li>Introduction to Biological safety</li> <li>Biosafety guideline-Govt of India, Basic biosafety practices in the laboratory</li> <li>Biological hazards</li> <li>Basic idea on GMO and LMO</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unit V<br>Bioethics                                        | <ol> <li>IPR and genetic resources</li> <li>Patent, Trade, Copyright and trade mark</li> <li>Indain patent Act, filing of patent application</li> <li>Biopiracy</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                            | <ul> <li>Recommended Textbooks and References:</li> <li>1. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge<br/>Economy.New Delhi: Tata McGraw-Hill Pub.</li> <li>2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring<br/>Harbor, NY: Cold Spring Harbor Laboratory Press.</li> <li>3. Bourne, P. E., &amp; Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.</li> <li>4. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and<br/>Genomics. Oxford: Oxford University Press.</li> <li>5. Lesk, A.M. (2002). Introduction to Bioinformatics. Oxford University Press</li> <li>6. Mount, D. W. (2001). Bioinformatics: Sequence and Genome analysis. Cold Spring<br/>Harbor, NY: Cold Spring Harbour Laboratory Press.</li> <li>7. Wayne W. Daniel, Bioststistics: A foundation for analysis in the Health Sciences.</li> <li>8. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.</li> <li>9. Daniel, W. W. (1987). Biostatistics, a Foundation for Analysis in the Health<br/>Sciences. New York: Wiley.</li> </ul> |

## CE-302 Epigenetics and Cancer Biology

Credits: 5

**Course Objectives:** The objective of the course is to provide a comprehensive idea about epigenetic and its mechanism, and cancer cells biology **Student Learning Outcomes:** The students are expected tolearn epigenetic related disorders and their consequences, differences aspects of cell transformation from normal to cancer cells, different proteins and genes involved in different types of cancers, and treatment

| Unit I<br>Epigenetics-I          | <ol> <li>Epigenetics- chromatin modifications and their mechanism of action</li> <li>Mechanism of chromatin remodeling</li> <li>Epigenetics and genome imprinting - DNA methylation in mammals, genomic imprinting in mammals</li> <li>Epigenetics in <i>Saccharomyces cerevisiae</i></li> <li>Gene silencing</li> </ol>                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Unit II</b><br>Epigenetics-II | <ol> <li>Epigenetic regulation of chromosome inheritance</li> <li>Epigenetic regulation of the X chromosomes in <i>C.elegans</i></li> <li>Dosage compensation in <i>Drosophila</i></li> <li>Dosage compensation in mammals</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unit III<br>Cancer Biology-I     | <ol> <li>Difference between normal cells and cancerous cell</li> <li>Proto-oncogene,tumor suppressor genes and care taker genes</li> <li>Loss of function and gain of function mutation,</li> <li>Cancer stem cells and its possible origin</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                        |
| Unit IV<br>Cancer Biology-II     | <ol> <li>Brief idea on different genes/proteins related to cancer: p53, APC, src, ras, Rb, BRCA1 and BRCA2, P<sup>21</sup> and P16.</li> <li>Limitless replicating potential: Metastasis, and Angiogenesis</li> <li>Apoptosis and Evasion of Apoptosis</li> </ol>                                                                                                                                                                                                                                                                                                                                                                             |
| Unit-V<br>Cancer Biology-III     | <ol> <li>Self sufficiency in growth signal</li> <li>Insensitivity to antigrowth signals</li> <li>Possible treatment of cancer: Radiation and chemotherapy</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | <ol> <li>Recommended Textbooks and References:</li> <li>Lewin''s Genes X, J.E. Krebs, E.S. Golstein, S.T. Kilpatrick, Volume 10, Jones and bartlet Publishers</li> <li>Lehinger Principles of Biochemistry, D.L. Nelson, M.M. Cox, 07<sup>th</sup> Edition</li> <li>Biochemistry, J.M. Berg, L. Stryer, J.L. Tymoczko, G.J. Gatto, 08<sup>th</sup> Edition</li> <li>Harper''s Illustrated Biochemistry, V.L. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennely, P.A. Weil, 31<sup>st</sup> Edition</li> <li>Principles of Cancer Biology, L.J. Kleinsmith</li> <li>Cancer Biology, R.J.B. King, M.W. Robins, 03<sup>rd</sup> Edition</li> </ol> |

**CE-302 Entomology** 

Credits: 5

Course Objectives: To enable the students to get acquainted with origin and classification of insects. It also give insight to commercial entomology, public health entomology, house hold pest, Integrated Pest Management modules for various important crops. They willalso learn about the various management strategy especially eco- friendly means of control.

Student Learning Outcomes: After the completion of the course the students will be acquainted with the different vectors, their characteristics and process of transmission and infection. The students will also learn about the management techniques of different vectors. Further, the students will also be aquainted with the different means of insect-pest management. They will also learn about the different application techniques of insecticides, and its management.

| Unit I                         | 1. Origin and Evolution of Insects                                                                                                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Origin and                     | 2. Classification of insects up to order with examples.                                                                                                     |
| Classification of              | 3. Growth development and metamorphosis of Insect                                                                                                           |
| Insects                        | 4. Collection and preservation of insects                                                                                                                   |
| Unit II                        | 1. Biology of honey bees and apiculture                                                                                                                     |
| Economical                     | 2. Lac insects and their management                                                                                                                         |
| Entomology                     | <b>3.</b> Prospects and status of Silk producing species - their distribution and life cycle                                                                |
|                                | 4. Structure of the silk gland                                                                                                                              |
| Unit III                       | 1. Morphology, Bionomics and Management of important pests of Rice                                                                                          |
| Mornhology and                 | 2. Morphology, Bionomics and Management of important pests of                                                                                               |
| Morphology and<br>Bionomics of | Sugarcane                                                                                                                                                   |
| Insects                        | 3. Predators, parasites and pathogens of Insects                                                                                                            |
| Unit IV                        | 1. Morphology, Bionomics and Management of pests of Mango                                                                                                   |
| Morphology and                 | 2. Morphology, Bionomics and Management of pests of Banana                                                                                                  |
| <b>Bionomics of</b>            | 3. Morphology, Bionomics and Management of Mosquitoes                                                                                                       |
| Insects-II                     | 4. Morphology, Bionomics and Management of Housefly                                                                                                         |
| Unit V                         | 1. Social behaviour in Insects                                                                                                                              |
| Social and                     | 2. Physiology and mechanism of Compound vision                                                                                                              |
| Physiological                  | 3. Insect Hormones with special reference to Pheromones                                                                                                     |
| Aspects of                     | 4. Thermoregulation in Insects                                                                                                                              |
| Insects                        |                                                                                                                                                             |
|                                | Recommended Textbooks and References:                                                                                                                       |
|                                | 1. The Insects: An Outline of Entomology, P.J. Gullan, P.S. Cranston                                                                                        |
|                                | 2. General Text book of Entomology, O.W. Richard, R.G. Davies, Part I & II                                                                                  |
|                                | <ol> <li>Insect Biology-A textbook of Entomology, H.E. Evans, Wesley Publ. Co</li> <li>General Entomology. M.S. Mani, Oxford &amp; IBH Publ. Co.</li> </ol> |
|                                | 5. Insects, M.S. Mani, National Book Trust, India                                                                                                           |
| •                              | 6. A Textbook of Entomology, H.H. Ross, C.A. Ross, J.R.P. Ross, John Wiley                                                                                  |
|                                | & Sons                                                                                                                                                      |

FI-301 Field Internship

Credits: 3

# **SEMESTER-IV**

### HC-401 Conservation Biology

Credits: 5

Course Objectives: Objectives of the paper is to provide basic idea on Biodiversity, measuring biodiversity, international and national efforts, molecular phylogeny and different conservationmeasures to conserve biodiversity.

Student Learning Outcomes: Students after completion of this course are expected to get a holistic understanding on biodiversity and its importance, phylogeny, inculcate the value of bio-resources and develop compassion toward bio-resources.

| Unit I                                                                                 | 1. Biodiversity (genetic diversity, species diversity, ecosystem diversity) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic                                                                                  | its use, Causes of biodiversity losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Concepts                                                                               | 2. IUCN red list of threatened species, Invasive species, Alien species,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                        | Indicator specie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                        | 3. Keystone species, Umbrella species, Flagship species, charismatic species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit II                                                                                | 1. Alpha, Beta and Gamma diversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measuring                                                                              | 2. Species Richness(S), Evenness(E), Simpsonindex(D),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Biodiversity                                                                           | 3. Shannon-Weiner Index (H')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·                                                                                      | 4. Idea on biodiversity calculator software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit III<br>International<br>and National<br>efforts for<br>conserving<br>biodiversity | <ol> <li>National Act and International Act related to Biodiversity Conservation</li> <li>Biological diversity Act 2002, National Biodiversity Authority, People<br/>Biodiversity Registrar,</li> <li>Convention on Biological diversity, Cartagena Protocol and Nagoya<br/>Protocol, Sustainable Development Goal and Biodiversity, Aichi<br/>Biodiversity Targets, CITES, WWF</li> </ol>                                                                                                                                                                                                                                                                                                 |
| Unit IV                                                                                | 1. In-situ conservation (Indian context) (Sanctuaries, National and Biosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conservation                                                                           | reserves)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Measures                                                                               | 2. Ex-situ conservation (Indian context) (Botanical gardens, zoos,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                        | cryopreservation, gene bank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                        | 3. NCBI data base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unit-V                                                                                 | 1.Basic idea on phylogenetic tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Molecular                                                                              | 2.Construction and interpretation of molecular phylogeny tree based on COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phylogeny                                                                              | 3. 16s rRNA gene sequences using MEGA and other tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                        | Recommended Textbooks and References:         1. Fundamental of Ecology : O.P Odum         2. Campbell Biology: Reece, Urry, Cain et al.         3. Evolutionary analysis : Herron and freeman         4. Convention of Biological diversity- https://www.cbd.int/         5. Aichi Biodiversity Targets- https://www.cbd.int/sp/targets/         6. IUCN-https://www.iucn.org/         7. CITES-https://cites.org/eng         8. https://sustainabledevelopment.un.org/topics/biodiversityandecosystems         9. https://bch.cbd.int/protocol/         10. https://www.cbd.int/abs/         11. https://wwf.panda.org/         12. http://moef.gov.in/         13. http://nbaindia.org/ |

HC-402

#### **Practical**

Credits:5

**Course Objectives:** Objectives of the paper is to provide hands on training and exposure to various processes related to conservation biology, cytogenetics and Applied Biology **Student Learning Outcomes:** Students are expected to learn the concepts of biostatistics and Excel which would help them to understand and solve the basic problems related to the courses.

| Conservation  | 1. Tabular and Graphical presentation of Data using Excel.                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biology,      | 2. Hypothesis testing-student t-test, F-test, ANOVA test, Chi-Sqaure test,                                                                                      |
| Cytogenetics, | 3. Practical related to simple correlation and regression analysis                                                                                              |
| Entomology,   | 4. External features of available field collected insects                                                                                                       |
| Stress        | 5. Methods of collection and preservation of insects                                                                                                            |
| Physiology,   | 6. Wing venation                                                                                                                                                |
| Applied       | 7. Types of wings and wing coupling apparatus                                                                                                                   |
| Biology       | 8. Types of insect antennae, mouth parts and legs                                                                                                               |
|               | 9. Insecticidal efficacy test                                                                                                                                   |
|               | 10. Study of life tables and plotting of survivorship curves of different                                                                                       |
|               | types from the hypothetical data provided                                                                                                                       |
|               | 11. Determination of population density of a hypothetical community by quadrate method and calculation of Shannon-Weiner Diversity Index for the same community |
|               | 12. Report on a visit to national park/biodiversity park/wild life sanctuary                                                                                    |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |
|               |                                                                                                                                                                 |

HC-403

## Dissertation

Credits:5

| CE-401              | <b>Course Objectives:</b> The objective of course is to provide |
|---------------------|-----------------------------------------------------------------|
| Cytogenetics,       | advanced knowledge on cytogenetics, stress physiology and       |
| Stress Physiology   | metabolic disorders.                                            |
| Stress i flyslology | Student Learning Outcomes: Students are expected to learn       |
| and Metabolic       | differences aspects of genomic analysis, meiotic abnormalities, |
| disorders           | different sex linked diseases and in situ techniques. Also, the |
|                     | course will help students in understanding the physiology of    |
| Credits: 5          | stress and various metabolic disorders.                         |

| Unit I<br>Cytogenetics-I<br>Unit II<br>Cytogenetics-II | <ol> <li>Genomic analysis and C-value paradox</li> <li>Human cytogenetics- Human karyotype, banding and nomenclature</li> <li>Numerical and structural abnormalities of chromosomes</li> <li>Meiotic abnormalities- Non-disjunction of chromosomes, mis-division of centromere</li> <li>Amniocentesis</li> <li>Monogenic disorders: Autosomal dominant Huntington's diseases, Autosomal recessive (Cystic fibrosis),</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit III<br>Metabolic DisordersI                       | <ol> <li>Autosoma recessive (Cystic horosis),</li> <li>Sex linked (Color blindness and Hemophilia)</li> <li>In situ- hybridization and its applications: FISH and GISH</li> <li>Transposons and associated disorders</li> <li>Biochemistry of inherited and metabolic disorders: Phenylketoneuria,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unit IV<br>Metabolic DisordersiI                       | <ul> <li>Alkaptonuria, Albinism</li> <li>Neurochemical associated diseases: Alzhimer's disease, Parkinson's disease</li> <li>Human nutrition and associated hazards</li> <li>Molecular mechanism of senescence</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit V<br>Stress Physiology                            | <ol> <li>Concept of Biological stress and strain</li> <li>Stress adaptation- Resistance, stress tolerance and acclimatization</li> <li>Stress associated disorders</li> <li>Oxidative stress</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | <ul> <li>Recommended Textbooks and References:</li> <li>Molecular Cell Biology, Lodish, Berk, Kaiser, Krieger, Bretscher, Ploegh, Amon, Martin</li> <li>Cell Biology, G. Karp</li> <li>Cell and Molecular Biology, De Robertis</li> <li>Lehinger Principles of Biochemistry, D.L. Nelson, M.M. Cox, 07<sup>th</sup> Edition</li> <li>Biochemistry, J.M. Berg, L. Stryer, J.L. Tymoczko, G.J. Gatto, 08<sup>th</sup> Edition</li> <li>Harper"s Illustrated Biochemistry, V.L. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennely, P.A. Weil, 31<sup>st</sup> Edition</li> <li>Principles of Cancer Biology, L.J. Kleinsmith</li> <li>Cancer Biology, R.J.B. King, M.W. Robins, 03<sup>rd</sup> Edition</li> <li>General Text book of Entomology, O.W. Richard, R.G. Davies, Part I &amp; II</li> <li>Insect Biology-A textbook of Entomology, H.E. Evans, Wesley Publ. Co</li> <li>General Entomology. M.S. Mani, Oxford &amp; IBH Publ. Co.</li> <li>Insects, M.S. Mani, National Book Trust, India</li> <li>A Textbook of Entomology, H.H. Ross, C.A. Ross, J.R.P. Ross, John Wiley &amp; Sons</li> </ul> |

| Semester-Fo<br>CE 401<br>Applied<br>Biology<br>Credits: 5 | <ul> <li>Course Objectives: This course deals with human gene mapping, cell culture, transgenic, nano-technology, nano-particles and their application in drug delivery. The course also covers ecotechnology and Molecular techniques.</li> <li>Student Learning Outcomes: Students after reading this course are expected to have knowledge orient towards industrial microbiology for self entrepreneurship development and application of nano-science in biological research. Further, it will enhance the students ability in various ecotechnological enterprenuership skills and advance molecular tools techniques.</li> </ul>                                                                                                                                                                                                                                              |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit I<br>Applied Genetics                                | <ol> <li>Human gene mapping- Physical mapping &amp; map-based cloning, molecular<br/>markers in genome analysis (RFLP, AFLP, RAPD)</li> <li>Ribozyme technology and its application</li> <li>Cell and tissue culture methods for animals</li> <li>Transgenic animals, molecular approaches to diagnosis and strain<br/>identification.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Unit II<br>Applied<br>Microbiology                        | <ol> <li>Microbial fermentation and production of small and macro molecules,</li> <li>Elementary Ideas of antibiotics (Classification and resistance)</li> <li>Genomics and its application to health and agriculture, including gene therapy.</li> <li>Biosensors, Bioterrorism (causative agents and consequences).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unit III<br>Nanotechnology                                | <ol> <li>Nanotechnology- Break through an introduction</li> <li>Application of Nanotechnology,</li> <li>Bucky balls, Bucky tubes and their applications,</li> <li>Nanotechnology in drug delivery</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unit IV<br>Ecotechnology                                  | <ol> <li>Solid waste management</li> <li>Biofertilizers</li> <li>Vermicomposting</li> <li>Biopesticide</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Unit IV<br>Molecular<br>Techniques                        | <ol> <li>Isolation of Genomic and plasmid DNA</li> <li>Polymerase Chain Reaction and its applications</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unit V<br>Molecular<br>Techniques                         | 1. DNA, Protein sequencing methods     2. Blotting techniques     Recommended Textbooks and References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | <ol> <li>Lewin"s Genes X, J.E. Krebs, E.S. Golstein, S.T. Kilpatrick, Volume 10, Jones and<br/>bartlet Publishers</li> <li>Lehinger Principles of Biochemistry, D.L. Nelson, M.M. Cox, 07<sup>th</sup> Edition</li> <li>Biochemistry, J.M. Berg, L. Stryer, J.L. Tymoczko, G.J. Gatto, 08<sup>th</sup> Edition</li> <li>Harper"s Illustrated Biochemistry, V.L. Rodwell, D.A. Bender, K.M. Botham, P.J.<br/>Kennely, P.A. Weil, 31<sup>st</sup> Edition</li> <li>Microbiology Principles and Explorations, J.G. Black, L.J. Black, 9<sup>th</sup> Edition,<br/>Willey Publishers</li> <li>Prescott"s Microbiology, J. Willey, K. Sandman, D. Wood, 11<sup>th</sup> Edition</li> <li>Basic Principles of Nanotechnology, W.C. Sanders, CRC Press</li> <li>Introduction to Nanotechnology, U. Kumar</li> <li>Nanophysics and Nanotechnology, E.L. Wolf, Willey Publications</li> </ol> |

#### ALLIED CORE: AC- 401

#### WOMEN AND SOCIETY

Credit: 3

#### POST GRADUATE DEPARTMENT OF ZOOLOGY, SBWAC SKILL BASED CERTIFICATE COURSE (SBCC)

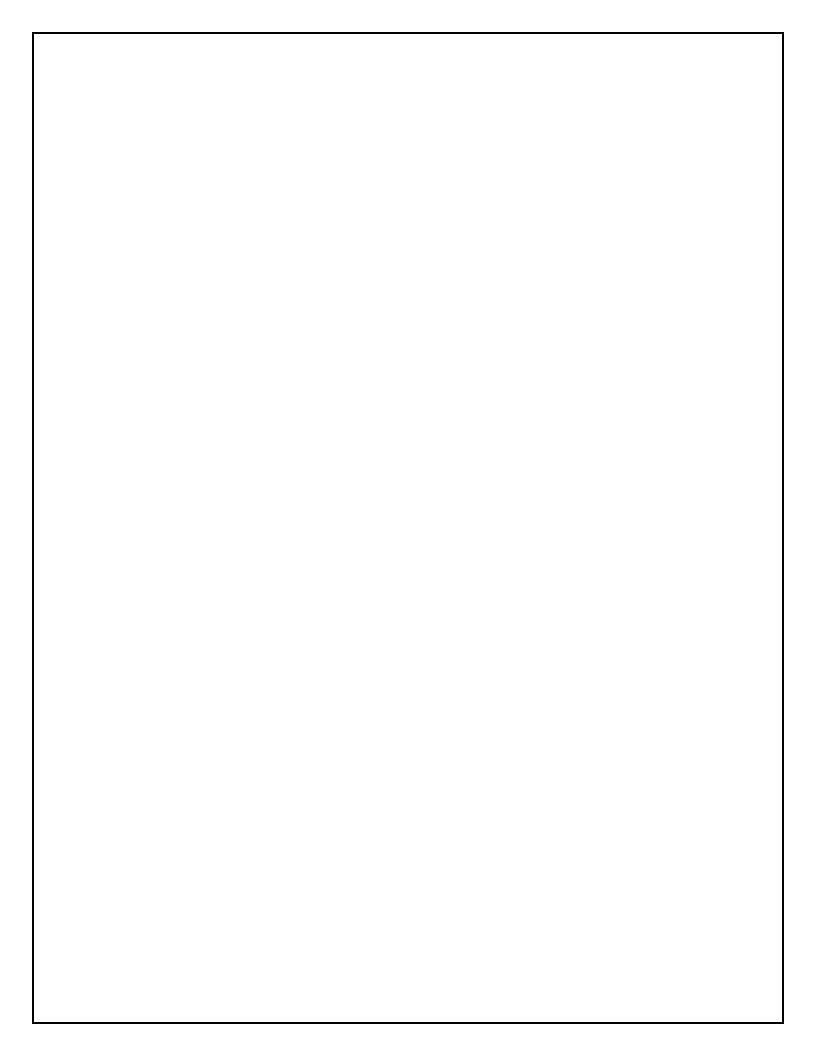
#### **Research Methodology**

**Unit 1:** Foundations of Research Meaning, Objectives, Motivation: Research Methods vs Methodology, Types of Research: Analytical vs Descriptive, Quantitative vs Qualitative, Basic vs applied.

Unit 2: Research Design Need for research design: Features of good design, important concepts related to good design- Observation and Facts, Prediction and Explanation, Development of Models. Developing a research plan: Problem identification, Experimentation, Determining experimental and sample designs.
Unit 3: Data Collection, Analysis and Report Writing Observation and Collection of Data-Methods of data collection- Sampling, Methods, Data Processing and Analysis Strategies, Technical Reports and Thesis, writing, Preparation of Tables and Bibliography. Data Presentation using digital technology.

**Unit 4:** Ethical Issues Intellectual property Rights, Commercialization, Copy Right, Royalty, Patent law, Plagiarism, Citation, Acknowledgement.

#### **Recommended Textbooks and References:**


1. Nicholas Walliman, (2017) Research Methods: The Basics: Routledge

2. C.R.Kothari and Gaurav Garg (2019) Research Methodology, New Age International.

3. Anthony, M, Graziano, A.M. and Raulin, M.L. (2009) Research Methods: A Process of Inquiry, Allyn and Bacon.

4. Wadhera, B.L.: Law Relating to Patents, Trade Marks, Copyright Designs and Geographical Indications, , Universal Law publishing

5. Coley, S.M. and Scheinberg, C.A. (1990) "Proposal writing". Stage Publications.

