HETEROCHROMATIN AND EUCHROMATIN

SUSHREE SHIBANEE DASH

ASSISTANT PROFESSOR

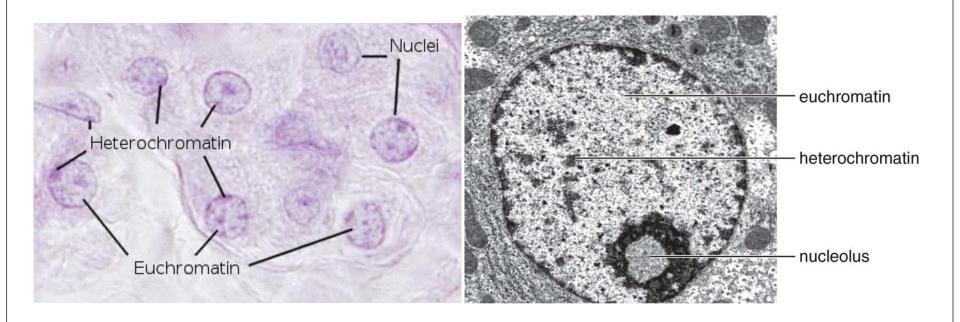
DEPARTMENT OF ZOOLOGY

SHAILABALA WOMEN'S AUTONOMOUS COLLEGE, CUTTACK

CONTENTS

- INTRODUCTION
- HETEROCHROMATIN
- EUCHROMATIN
- DNA PACKING
- CHROMATIN STRUCTURE
- DIFFERENCE BETWEEN EUCHROMATIN AND HETERICHROMATIN
- CONCLUSION
- REFERENCES

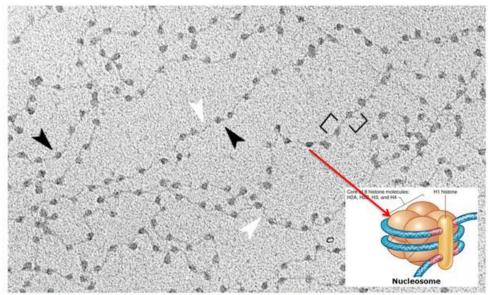
INTRODUCTION


- The term heterochromatin and euchromatin was coined by Emil Heitz in 1928
- Chromatin is composed of DNA and proteins(histones)-help in protein fold so it can be packed into tiny volume of a cell's nucleus.
- These protect DNA inside the nucleus
- 2 types- euchromatin and heterochromatin

HETEROCHROMATIN

- The region of the chromosome that appear relatively condensed throughtout cell cycle, even during interphase and stained deeply with DNA specific strains
- It is tightly packed form of DNA.
- 2 types: Constitutive heterochromatin and facultative heterochromatin
- Play role in gene expression
- Transcriptionally inactive

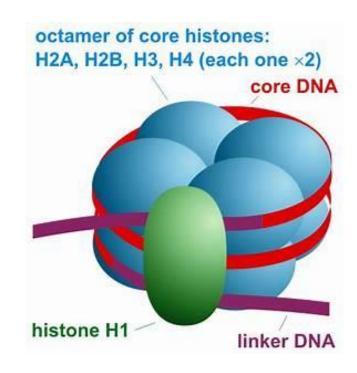
- Facultative heterochromatin-result of genes silenced through a mechanism such as Histone methylation or siRNA through RNAi.
- Constitutive heterochromatin-usually repetitive and forms structural areas like centromeres and telomeres.
 - rich in satellite DNA
 - surrounds the centromere and telomere


HOW DO THEY APPEAR?

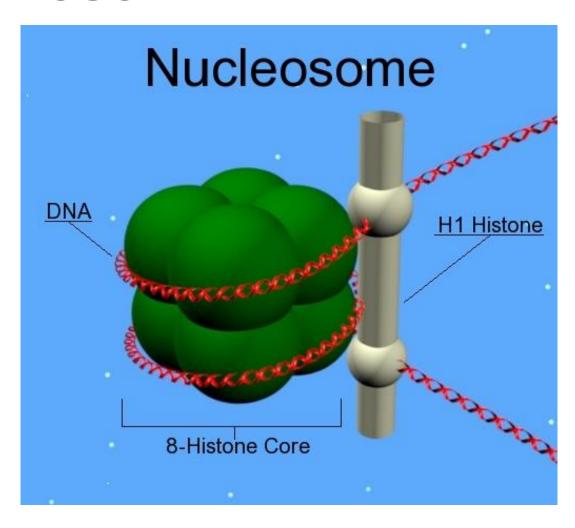
EUCHROMATIN

- Lightly packed form/loosely coiled
- Rich in gene concentration
- Under Active transcription
- Comprises most active portion of human genome inside the nucleus, 92% of human genome is euchromatin.
- An elongated, open 10nm fibre(electron microscopy)

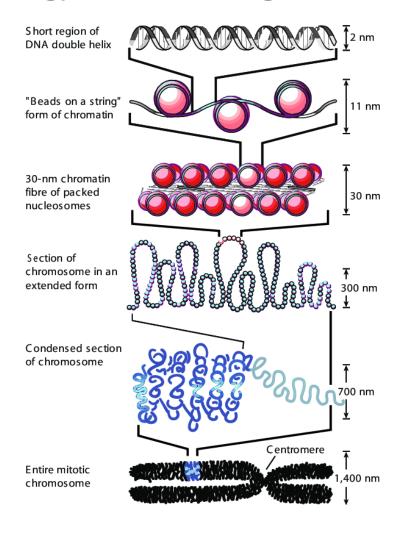
DNA PACKAGING



Beads-on-string: the beads (black arrow head) represents histone core, white arrow head represents linker DNA. Black square bracket represent individual nucleosome. Enlarged image: nucleosome. *Image source: cc wikipedia*


- Unfolded chromatins-beads on a string
- Beads-nucleosomes(basic unit of DNA packaging)
- String-DNA

Nucleosome


- A piece of DNA wound around a protein core
- DNA-Histone association remains intact throughput the cell cycle
- Histones only leave DNA briefly during DNA replication
- With very few exceptions histones stay with the DNA during transcription

NUCLEOSOME

PACKAGING HIERARCHY

Histones

- 5 kinds-H1, H2A, H2B, H3, H4
- Extremely abundant proteins
- Mass of histones in eukaryotic nuclei=mass of DNA

DIFFERENCE

	EUCHROMATIN	CONSTITUTIVE HETEROCHROMATI N	INTERCALARY HETEROCHROMAT IN
RELATION TO BANDS	IN R-BANDS	IN C-BANDS	IN G-BANDS
LOCATION	CHROMOSOME ARMS	USUALLY CENTROMERIC	CHROMOSOME ARMS
CONDITION DURING INTERPHASE	USUALLY DISPERSED	INACTIVE	PROBABLY INACTIVE
GENETIC ACTIVITY	USUALLY ACTIVE	INACTIVE	PROBABLY INACTIVE
RELATION TO CHROMOSOME S	INTERCHROMOME RIC	CENTROMERIC CHROMOSOMES	INTERCALARY CHROMOSOMES