$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(d) Write the matrix in row reduced Echelon form

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

(e) Find inverse of matrix $\left[\begin{array}{cc}4 & 3 \\ 1 & -1\end{array}\right]$.
(f) Determine the values of 'a' such that Rank of the matrix $\left[\begin{array}{ll}a & 4 \\ 1 & 2\end{array}\right]$ is 1 .
(g) Check whether $f(x)=x^{2}+1$ is invertible.
(h) Prove that a set of vectors contains atleast one zero vector is L.D.
(i) Prove that four vectors $\alpha_{1}=(1,0,0), \alpha_{2}=(0,1,0)$, $\alpha_{3}=(0,0,1)$ and $\alpha_{4}=(1,1,1)$ in v_{3} form a L.D. set.
(j) If ' a ' is a divisor of two integers g and h, then $a \mid(m g+n h)$ for any integer m and n.

2023

Full Marks - 80

Time- $\mathbf{3}$ hrs.
The figures in the right hand margin indicate marks. Answer ALL questions.

Part - I

1. Answer all : $\quad[1 \times 12=12$
(a) Determine principal argument of $\mathrm{Z}=1-\mathrm{i}$.
(b) Represent $\mathrm{Z}=3 \mathrm{i}$ in Polar form.
(c) Magnitude of Complex Number $Z=\frac{1}{1+i}$ is
\qquad -
(d) If R is the equivalence relation defined in the set A , then equivalence classes are non-empty sets. (T/F)
(e) The smallest equivalence relation defined on the $\operatorname{set} \mathrm{A}=\{1,2,3\}$ is \qquad .
(f) If $f: R \rightarrow R$ by $f(x)=x^{2}+1$ and $g: R \rightarrow R$ by $g(x)=\frac{1}{x}$. Then $(f o g)(2)=$ \qquad .
[2]
(g) A system of linear equations is said to be consistent. If there exist \qquad solution.
(h) For which value of K, the system of Equations $k x+2 y=0$ and $2 x+k y=0$ have infinite solutions.
(i) State division Algorithm.
(j) What is Rank of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.
(k) A set of vectors contains atleast one zero vectors is L. I. (T/F)
(1) What is singular matrix.

Part-II

2. Answer any EIGHT questions: $[2 \times 8=16$
(a) Put complex number $\left(\frac{2+i}{3-i}\right)^{2}$ in Polar form.
(b) Simplify $\left[\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right]^{\frac{1}{4}}$.
(c) Define Equivalence Class.
(d) If $x \equiv a(\bmod n)$ and $y \equiv b(\bmod n)$, prove that $x y \equiv a b(\bmod n)$.
(e) If dimensions of subspaces ' v_{1} ' and ' v ' of a vector [Cont...

[3]

space ' v ' are respectively 5 and 7 and $\operatorname{dim}\left(v_{1}+v_{2}\right)=1$. Then find $\operatorname{dim}\left(v_{1} \cap v_{2}\right)$.
(f) Define Eigen values of a matrix.
(g) Determine whether the map $T: v_{2} \rightarrow v_{2}$ defined by $T(x, y)=\left(x^{2}, y\right)$ is linear.
(h) Show that the vectors $(1,2)$ and $(3,4)$ are L. I.
(i) State Fundamental theorem of Arithmatic.
(j) Write the vector equation as a system of equation

$$
x_{1}\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{c}
11 \\
9 \\
4
\end{array}\right] .
$$

Part-III

3. Answer any EIGHT questions: $[3 \times 8=24$
(a) Solve the equation $z^{3}-1=0$ using De moivres theorem.
(b) Find smallest positive integer ' n ' for which $\left(\frac{1+i}{1-i}\right)^{n}=1$.
(c) Find characterstics equation of the matrix
4. Find Rank and Nullity of given matrix
$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4\end{array}\right]$.
OR
Find basis and demension for the rull space of

$$
\text { matrix } A=\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right] .
$$

SA-60

[5]

Part-IV
Answer all the questions :

$$
[4 \times 7=28
$$

4. If $z_{1}+\frac{1}{z_{1}}=2 \cos \theta, z_{2}+\frac{1}{z_{2}}=2 \cos \theta$. Show that $z_{1}^{m} z_{2}^{n}+\frac{1}{z_{1}^{m} z_{2}^{n}}=2 \cos (m \theta+n \varphi)$.

OR
Find square root of $-7+24 i$.
5. Use Mathematical Induction to prove $10^{2 n-1}+1$ is divisible by 11 .

OR
Prove that R is uncountable.
6. For what value of λ and μ the given system having
(a)No solution (b) Unique solution $x_{1}+x_{2}+x_{3}=3$, $4 x_{1}+3 x_{2}-2 x_{3}=5,2 x_{1}+3 x_{2}+\lambda x_{3}=\mu$.

OR
Investigate for consistency of following equations.
If possible find the solution $4 x-2 y+6 z=8$, $x+y-3 z=-1,15 x-3 y+9 z=21$.

